Alarm/Interlock system

In the UML notation

By Peter Kravtsov (E-mail: PAKravtsov@lbl.qov)

June 2000

mailto:PAKravtsov@lbl.gov

Alarm/Interlock system

1. Requirements Analysis

Alarm/interlock system is a device designed to watch the critical sensors and tak
corresponding actions in case of certain fault conditions. The sensors are read by
microcontroller with the help of 16-bit ADC. The user can easily prevent any particular
alarm event from being processed by the system. The device comes with appropriate PC
configuration and monitoring software. We will examine our system as two independent
parts whereas once configured, the device itself can work standalone. So we will divide it
to hardware and software parts, meaning the device and configuration software. The main
features of the system that we are going to consider are:

e Capacity for 32 sensors inputs and 32 control outputs (32 alarm event channels).

e 12-key keyboard and 2-digit LED indicator is used to direct control interlock
system.

e Two LED's for each alarm event channel. One is used to indicate alarm event
while second shows the blocking state of this channel.

e Fastreaction to sensor signal changes. The response time must be less than 50ms.

e CPU supervisor circuit for resetting the system in case of internal failure.

e Remote configuration feature, including PC software. All alarm setpoints,
comparison signs and handling algorithms can be adjusted.

Alarm system is constantly interacting with its environment. We can consider our
device as a black box reacting to the requests and messages from the environment, which
is composed of several agents. Each agent interacts with the system with a different
purpose and it exchanges a different set of messages. We have identified three agents: the
user, the sensors and devices under control (basically solenoid valves). The only one
agent for configuration software is the user.

1.1 Use Cases

Use cases describe the functionality of the system from the agent's point of view.
Each use case is a different way to use system and the completion of each use case
produces a different result. Use cases for hardware and software parts are represented in
the Figures 1 and 2.

Hardware use cases

Block alarm - the user enters an alarm event number using keyboard and indicator and
presses the 'BLOCK' button. Selected alarm event won't be processed by the
system.

Unblock alarm - the user enters an alarm event number using keyboard and indicator and
presses the 'UNBLOCK' button. Blocking state of this channel is cleared.
Selected alarm event will be processed by the system.

Block all alarms - the user enters a special code using keyboard and indicator and presses
the 'BLOCK' button. This will set blocking state for all alarm channels. All
alarm events won't be processed by the system.

Page 2 of 9

Alarm/Interlock system

D O O OO

nblock all alarms

Block alarm Unblock alarm Blocl%all alarms

/

x a9

Cause|alarm
Sensor

S O S

Devices .
control signal

Wiatch blocking state Watch alarm state
Fig. 1. Hardware use case diagram

Unblock all alarms - the user enters a special code using keyboard and indicator and
presses the 'UNBLOCK' button. This will clear blocking state for all alarm
channels. All alarm events will be processed by the system.

Watch blocking state - the system constantly shows blocking state for each alarm channel
using the corresponding LED on front panel. The user just looks at it.

Watch alarm state - the system constantly shows alarm state for each channel using the
corresponding LED on front panel.

Cause alarm - the sensor changes its' signal level exceeding the alarm setpoint and leads
system to react.

Receive control signal - devices under control just get reasonable control signals and
change their states.

Software use cases

Change averaging count - system is capable of averaging sensors analog signals in order
to eliminate signal noise. Average count is configurable.

Change default valves configuration - the user can select default state for each device.
This state will be used as normal, non-alarmed, state.

Read system information - the user can download status information from the device, like
working time, number of supervisor resets, averaging count and default
devices configuration.

Watch analog input values - the device keeps all sensor signal readings and they can be
read by the user.

Change alarm setpoints and behavior - for each alarm channel there is a possibility to
change setpoint, comparison sign and affected devices configuration.

Page 3 of 9

Alarm/Interlock system

o OO D DO

Change default Change alarm
valves configuration setpoints and behaviour

Change analog
input coefficients

gy

Run an?Iog signal
/test

|
/

S S o OO

Read system Watch analog Read alarm Get time dependence
information input values setpoints and behaviour of analog input

Fig. 2. Software use case diagram

Read alarm setpoints and behavior - the user can download alarms configuration from

the device.

Change analog input coefficients - these are coefficients for conversion voltage to
physical units, whereas the device operates only voltages but alarm setpoints

are represented in physical units.

Run analog signal test - the user can enforce device to send time dependence of each

analog channel.

Get time dependence of analog input - software shows received time dependence in a

chart for each channel selected by user.

1.2 Scenarios

The scenarios should describe the interaction between the active external actors
with the system. In our system the majority of scenarios are very simple and clear. There
are only two most important diagrams: alarm handling diagram (Fig. 3) and alarm

recovery diagram (Fig. 4).

The alarm handling specialty is as follows. The system stores affected devices
pattern for all alarmed channel system. In the alarm recovery procedure the system
changes only those outputs, which were not alarmed by the previous channels, making
use of the stored list of the changed outputs. So the outputs which changed their states

Page 4 of 9

Alarm/Interlock system

X

: User : System . NVRAM
Interface

: Sensor

1: Change voltage

Sensor signal
exceeds alarm
threshold

2: Compare voltage with threshold

1

~-...3; Light Alarm LED

Channel is
blocked

Alarm recovery
sequence

"

4: Check blocking status

P

5: Put blocking LED out
U\ 6: Get Alarm configuration

1

7: Change default devices co

nfiguration

: Devices

8: Store affected devices pattern

a—

9: Light blocking LED

[~

Fig. 3. Alarm handling sequence diagram.

1

because of the alarm are not affected by the alarm recovery procedure, if we consider a
single processing (handling) cycle.

Page 5 of 9

Alarm/Interlock system

X

: Sensor

. User
Interface

1. Change voltage

. System

3: Clear Alarm LED

: NVRAM

i

4:[Alarm is not blocked]
Put blocking LED out

i

5:[Alarm is blocked]
Light blocking LED

h

2: Compare voltage with threshold

6. Get Alarm recovery configuration

A

: Devices

" |Sensor signal does

not exceed alarm
threshold
(or alarm is blocked)

—

7: Ignore devices affected by an alarm

8: Change default devices

configuration

Fig. 4. Alarm recovery sequence diagram.

Page 6 of 9

Alarm/Interlock system

1. Object structure

Class diagram for PC software is shown in Fig. 5. The program contains 4 panes:
System Information, Alarm Configuration, Analog Signal Test, Devices Configuration.
For each pane it has corresponding object.

The alarms configuration data is kept in Alarm Configuration objects, while
S Alarm Configuration class just gives a possibility to change them, download from
alarm system or upload changed configuration. Besides, S Alarm_Configuration is used
for adjusting sensor parameters, like name, units and translate coefficients, which are
helpful to represent all data in physical values, while alarm system operates only
voltages. Sensor parameters are kept in the Semsorlnfo objects. Similar parameters
describe each controlled device in the system (see the DevicesInfo class).

Software communicates with alarm system via RS-232 serial interface, using
S Serial Interface class, which provides one command transfer with CRC check. The
S NVRAM Access object makes it possible to transfer area of NVRAM specified by
starting address and bytes number. This object transfer bytes with S Serial Interface.

User can read system information and analog inputs values using
S System_Information object. This object also operates averaging counter and does initial
connection to alarm system, together with reading software version from it.

The S Analog Signal Test intended to execute signal test procedure in alarm
system, read signal histories and show them in chart. It also provides basic chart-handling
procedures, like picture export.

Page 7 of 9

Alarm/Interlock system

S _Sensorsinfo

WSaveToRegistry()
L oadFromRegistry()
¥SaveToFile()
®LoadFromFile()

1.7

Alarm Configuration

wAlarmThreshold
<iComparison sign

&IAlarm devices pattern
&Alarm return devices pattern
<iDevices ignore pattern

Sensorsinfo
BEA_Coefficient
E5B_Coefficient
1+ EEName
“ | E8Units

1.*

DevicesInfo
B ChannelNumber
ESName
&NormallyClosed
ESVoltage 1.

4 ®LoadFromRegistry()

S Devices_Info

¥ SaveToRegistry()

¥SaveToFile()
SLoadFromFile()
¥ ChangeDevicelnfo()

S_Alarm_Configuration

S_System_Information

S_Analog_Signal_Test

®ReadAlarmsConfiguration()
®\\riteAlarmsConfiguration()
®ChangeSensorinfo()

¥ ChangeAlarmConfiguration()

EZWorking time

B3 Watch-Dog counter

&5 Averaging counter

B3 Current devices pattem
B3 Analog signal values
&3 Software version

E¥SignalHistory
EZ¥SamplesCount

®Connect()

@ Disconnect()

¥ SetAverageCount()
®ReadSysteminfo()
®ChangeDefaultStatePattern()
@ ShowDeviceVoltages()

¥ ShowDeviceStates()
@ReadSoftwareVersion()
#ShowAnalogVoltages()

F\WriteSamplesCount()
¥ReadHistory()
®PlotSignalHistory()

¥ ExportToOWMF ()

¥ ExportToText()

S_NVRAM_Access

B StartingAddress
&3 BytesToTransfer

@\WriteByte()
¥ ReadByte()
@WriteMemoryArea()
#ReadMemoryArea()

S_Serial_Interface

Fig. 5. PC Software class diagram.

¥SendCommand()
¥ReceiveAnswer()

Page 8 of 9

Alarm/Interlock system

The controller software class diagram is shown in Fig. 6. It also has the Alarm
Configuration class, which is the same as one in PC software. All Alarm Configuration
objects are kept in NVRAM object, which also contain all system parameters like
Working time, Averaging counter, Default state pattern etc. The blocking statuses for
each channel together with current analog signal values belong to NVRAM as well.

The software uses Serial Interface object that works as a communication server for
PC software S Serial Interface object. All analog samples are read through Analoglnput
class and devices are controlled with DigitalOutput class. The system also controls User
Interface, which comprises DigitalDisplay, Keyboard and two LED displays (Blocking

LEDs and Alarm LED:s).
Analoginput DigitalOutput
$GetSample() $SwitchON()
¥ SwitchOFF ()
Sensor 1.7* M1.* Devices
//
System Serial Interface
EfAffectedDevices EZCommand
Keyboard
KevCode CheckAlarmCycle() ¥ GetSoftwareVersion()
Yy
¥BlockSingleAlarm() ¥ ReadNVRAMbyte()
®GetLastKey() ‘TotaIBIock() FWWriteNVRAMbyte()
#UnblockSingleAlarm() W SetDefaultState()
#TotalUnblock() #SetSignalTestCounter()
NVRAM
- : Blocked alarms
DigitalDisplay v .
«Current devices pattern
Bscillntaridee ~ ®Contents @Averaging counter
- «»\Watch-Dog counter
Update() &Working time
¢#Analog signal values
g#Default state pattern
Blocking LEDs Alarm LEDs

N/

LEDs

EfstartLEDAddress

WL ight()
FClear()

1.”

Alarm Configuration

«AlarmThreshold
«AComparison sign

<#Alarm devices pattern
<*Alarm return devices pattern
«ADevices ignore pattern

Fig. 6. Microcontroller software class diagram.

Page 9 of 9

	Alarm/Interlock system
	In the UML notation
	By Peter Kravtsov (E-mail: PAKravtsov@lbl.gov)
	June 20001. Requirements Analysis
	1.1 Use Cases
	1.2 Scenarios

	1. Object structure

